Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Breast Cancer Res Treat ; 197(3): 461-478, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36473978

RESUMO

PURPOSE: Inflammatory breast cancer (IBC) is characterized by numerous tumor emboli especially within dermal lymphatics. The explanation remains a mystery. METHODS: This study combines experimental studies with two different IBC xenografts with image algorithmic studies utilizing human tissue microarrays (TMAs) of IBC vs non-IBC cases to support a novel hypothesis to explain IBC's sina qua non signature of florid lymphovascular emboli. RESULTS: In the human TMAs, compared to tumor features like nuclear grade (size), mitosis and Ki-67 immunoreactivity which show that IBC is only modestly more proliferative with larger nuclei than non-IBC, what really sets IBC apart is the markedly greater number of tumor emboli and distinctly smaller emboli whose numbers indicate geometric or exponential differences between IBC and non-IBC. In the experimental xenograft studies, Mary-X gives rise to tight spheroids in vitro which exhibit dynamic budding into smaller daughter spheroids whereas Karen-X exhibits only loose non-budding aggregates. Furthermore Mary-X emboli also bud dramatically into smaller daughter emboli in vivo. The mechanism that regulates this involves the generation of E-cad/NTF1, a calpain-mediated cleavage 100 kDa product of 120 kDa full length membrane E-cadherin. Inhibiting this calpain-mediated cleavage of E-cadherin by blocking either the calpain site of cleavage (SC) or the site of binding (SB) with specific decapeptides that both penetrate the cell membrane and mimic either the cleavage site or the binding site on E-cadherin, inhibits the generation of E-cad/NTF1 in a dose-dependent manner, reduces spheroid compactness and decreases budding. CONCLUSION: Since E-cad/NFT1 retains the p120ctn binding site but loses the α-and ß-catenin sites, promoting its 360° distribution around the cell's membrane, the vacilating levels of this molecule trigger budding of both the spheroids as well as the emboli. Recurrent and geometric budding of parental emboli into daughter emboli then would account for the plethora of emboli seen in IBC.


Assuntos
Neoplasias da Mama , Neoplasias Inflamatórias Mamárias , Células Neoplásicas Circulantes , Feminino , Humanos , Caderinas/metabolismo , Calpaína , Neoplasias Inflamatórias Mamárias/patologia , Células Neoplásicas Circulantes/patologia , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Animais
2.
Sensors (Basel) ; 22(13)2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35808551

RESUMO

BACKGROUND: Parkinsonian syndrome (PS) is a broad category of neurodegenerative movement disorders that includes Parkinson disease, multiple system atrophy (MSA), progressive supranuclear palsy, and corticobasal degeneration. Parkinson disease (PD) is the second most common neurodegenerative disorder with loss of dopaminergic neurons of the substantia nigra and, thus, dysfunction of the nigrostriatal pathway. In addition to the motor symptoms of bradykinesia, rigidity, tremors, and postural instability, nonmotor symptoms such as autonomic dysregulation (AutD) can also occur. Heart rate variability (HRV) has been used as a measure of AutD and has shown to be prognostic in diseases such as diabetes mellitus and cirrhosis, as well as PD. I-123 ioflupane, a gamma ray-emitting radiopharmaceutical used in single-photon emission computed tomography (SPECT), is used to measure the loss of dopaminergic neurons in PD. Through the combination of SPECT and HRV, we tested the hypothesis that asymmetrically worse left-sided neuronal loss would cause greater AutD. METHODS: 51 patients were enrolled on the day of their standard of care I-123 ioflupane scan for the work-up of possible Parkinsonian syndrome. Demographic information, medical and medication history, and ECG data were collected. HRV metrics were extracted from the ECG data. I-123 ioflupane scans were interpreted by a board-certified nuclear radiologist and quantified by automated software to generate striatal binding ratios (SBRs). Statistical analyses were performed to find correlations between the HRV and SPECT parameters. RESULTS: 32 patients were excluded from the final analysis because of normal scans, prior strokes, cardiac disorders and procedures, or cancer. Abnormal I-123 ioflupane scans were clustered using T-SNE, and one-way ANOVA was performed to compare HRV and SBR parameters. The analysis was repeated after the exclusion of patients taking angiotensin-converting enzyme inhibitors, given the known mechanism on autonomic function. Subsequent analysis showed a significant difference between the high-frequency domains of heart rate variability, asymmetry of the caudate SBR, and putamen-to-caudate SBR. CONCLUSION: Our results support the hypothesis that more imbalanced (specifically worse left-sided) neuronal loss results in greater AutD.


Assuntos
Doença de Parkinson , Transtornos Parkinsonianos , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Frequência Cardíaca , Humanos , Neuroimagem , Transtornos Parkinsonianos/diagnóstico por imagem , Transtornos Parkinsonianos/metabolismo , Projetos Piloto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...